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MODEL SIZE TREND IN NLP

• Training the largest transformer-based language 
model has recently been one of the best ways to 
advance the state-of-the-art in NLP applications

• NLP model size increases by almost an order of 
magnitude every year
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WHY LARGE NLP MODELS?

• Imagenet moment of NLP

• Unsupervised pretraining on large text corpora has eliminated training dataset size issues

• Lots of downstream NLP applications have benefited from recent advancements

• Training larger models with more data results in better accuracy in almost all cases
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• GPT2-based language model

• Training data:
174 GB WebText / CC-Stories /
Wikipedia / RealNews

EXAMPLE 1: LEFT-TO-RIGHT LANGUAGE MODEL

Model 

Size

Wikitext-103 
(Perplexity ↓)

355 M 19.22

2.5 B 12.68

8.3 B 10.81

Previous SOTA 16.43*

* Dynamic Evaluation of Transformer Language Models, 
Krause et. al., 2019
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POWERFUL GENERATIONS
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POWERFUL GENERATIONS
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https://docs.google.com/file/d/1Hf6-U9q6mhs-x0jT0TFsZeBSa8VwvtZh/preview
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POWERFUL GENERATIONS
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EXAMPLE 2: BERT

• Canonical downstream tasks

• Larger model trained on fewer number of tokens produces better results
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EXAMPLE 3: TEACHING MODELS TO 
GENERATE QUESTIONS AND ANSWERS

• Using synthetic data can beat using only human 
labeled data

Paper: https://arxiv.org/abs/1909.08053

• Scale is the key in improving results

https://arxiv.org/abs/1909.08053
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EXAMPLE 3: Q&A OVER TESLA CAR MANUAL 
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https://docs.google.com/file/d/1E6-0v31OyaaGprUiQjTuP2ojedj5OYkk/preview
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EXAMPLE 4: CHATBOTS

• Generative Conversation Control (GCC)
• Paper: https://www.aclweb.org/anthology/2020.acl-main.8/

• Persona control by conditioning on prior conversations

https://www.aclweb.org/anthology/2020.acl-main.8/
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EXAMPLE 4: CHATBOTS

https://docs.google.com/file/d/1ZPYi_x02PaUHZazrvt5ePuQt2_oLcWXM/preview
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RECAP: WHY LARGE NLP MODELS?

• Imagenet moment of NLP

• Unsupervised pretraining on large text corpora has eliminated training dataset size issues

• Lots of downstream NLP application have benefited from recent advancements

• Training larger models with more data results in better accuracy in all cases

We need software and hardware that can efficiently and easily enable 

researchers to train large NLP models
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NVIDIA’s framework for efficiently training the world’s 
largest transformer-based language models.

Paper: https://arxiv.org/abs/1909.08053
Repo:  https://github.com/NVIDIA/Megatron-LM  
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MEGATRON

● All the aforementioned cases are trained using Megatron

● Megatron has been directly used to train Turing-NLG (17.2B)

● Megatron has inspired other work such as BlenderBot by Facebook

https://arxiv.org/abs/1909.08053
https://github.com/NVIDIA/Megatron-LM
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GOALS FOR MEGATRON

• Low barrier to entry

• Ability to build on top our existing code base (no rewriting, …)

• Devising simple methods that require minimal changes

• Training of transformer-based language models with billions of parameters

• Requires model parallelism to fit in GPU memory

• Only support transformer-based model

• Achieving high utilization and scaling up to thousands of GPUs
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MODEL PARALLELISM

• Inter-Layer (Pipeline) Parallelism

• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

• Intra-Layer (Tensor) Parallelism

• Split individual layers across multiple devices

• Both devices compute difference parts of Layer 0,1,2,3,4,5
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WHY INTRA-LAYER MODEL PARALLELISM

• Tensor parallelism is much simpler to implement

• Easier to load-balance

• Less restrictive on the batch-size (bubble issue in pipelining)

• Intra-layer model parallelism is orthogonal to pipeline parallelism: very large models such as GPT-3 use both.

• Transformers have large GEMMs

• Tensor parallelism works well for large matrices

• NVIDIA DGX-A100 boxes with nvlink

• DGX-A100 has 600 GB/sec GPU-to-GPU bidirectional bandwidth
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CHALLENGES WITH INTRA-LAYER MODEL PARALLELISM

• Tensor splitting results in lower math intensity

• This approach is not suitable for strong scaling

• We should make sure math intensity stays above that of the
processor

• A100 math intensity = 312 teraFLOPs/1555 GB/sec = 200

• Intra-layer model parallelism requires more communication.

• DGX-A100 with nvlink mitigates this issue. 

Operation:

Flops: 

Bandwidth:

Intensity:

Parallel
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SIMPLE EXAMPLE OF TENSOR PARALLELISM
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APPROACH FOR TRANSFORMER MODELS

• Develop an approach that can be fully implemented with insertion of few 
simple collectives

• Rely on pre-existing NCCL/PyTorch operations for a native PyTorch 
implementation

• Group math heavy operations (such as GEMMs) before parallel 
communication point



21 

PARTITIONING MLP

• MLP:

• Approach 1: split X column-wise and A row-wise:

• Before GeLU, we will need a communication point

• Approach 2: split A column-wise:

• no communication is required
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MLP

f and g are conjugate, f is identity operator in the forward pass and all-reduce in the backward 
pass while g is all-reduce in forward and identity in backward.
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f AND g ARE SIMPLE
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PARTITIONING: SELF-ATTENTION

• Self-attention is more complex than MLP

Figure courtesy of Vaswani et al. 2017
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SELF-ATTENTION

f and g are conjugate, f is identity operator in the forward pass and all-reduce in the backward 
pass while g is all-reduce in forward and identity in backward.
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PARALLEL TRANSFORMER LAYER
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HYBRID MODEL+DATA PARALLELISM

GPU-0

GPU-1

model parallel 
group 0

GPU-2

GPU-3

model parallel 
group 1

data parallel 
group 0

data parallel 
group 1

multiple groups of communicators
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WEAK SCALING EFFICIENCY ON SELENE

Baseline (1.2B parameters on a single GPU) sustains 118 teraFLOPs/sec on an A100 
GPU during the entire training process.

model parallel model + data parallel

case hidden size attention 
heads num layers num parameters 

(billions)
model parallel 

size
model+data 
parallel size

1B 1920 15 24 1.2 1 128

2B 2304 18 30 2.0 2 256

4B 3072 24 36 4.2 4 512

8B 4096 32 42 8.7 8 1024
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SIDE CHALLENGES OF 
TRAINING LARGE MODELS
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CHANGES IN MODEL STRUCTURE AND INITIALIZATION

• Scaling BERT model as presented in the original work 
beyond 336M parameters results in instabilities

• Rearranging the residual connection to allow for the 
direct flow of gradients is necessary

• However, the weights right before the residual 
connection need to be initialized with a much lower 
variance 



31 

RANDOM NUMBERS IN SELF-ATTENTION

• Tensor splitting results in both serial and parallel 
regions

• For a model instance

• serial regions need to have the same RNG sate

• parallel regions need to have different RNG states

• As a result we need to track two sets of RNG states
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LARGE MODELS ARE MORE SENSITIVE TO DATA SHUFFLING

• Small models are insensitive to the dataset order

• Larger models have much higher power of 
memorization and as a result more sensitive to 
shuffling scheme

• Special attention to dataloaders is required for large 
models
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SUMMARY

• Ability to train large language models is essential for today’s NLP application.

• Intra-layer model parallelism is powerful yet simple for NLP models.

• We can scale models efficiently to billions of parameters on thousands of GPUs.

• When scaling models, careful attention to model structure and data loaders is required




