Quantum Supremacy using a Programmable Superconducting Processor

John Martinis Google & UCSB

- New design, scalable and low 1&2 qubit errors
- Quantum supremacy achieved
 - 200s quantum computer, checked 10k yr
- Computation on 10¹⁶ state (Hilbert) space
- Fidelity validated with 1&2 qubit errors
 - No additional decoherence physics when scaled
- First useful application: certified random numbers
- Beginning of NISQ era with powerful processors

Sycamore Processor: 54 qubits

Fabrication

Packaging

Dilution refrigerator

. .

Control Hardware

Custom built High speed High precision

Low Errors using Fast 2-Qubit Gates (12 ns)

Low Errors for Arbitrary 2-qubit Gates

Excitation preserving unitary (Fermionic simulation for NISQ)

1
 0
 0
 0

 0

$$\cos(\theta)$$
 $-i \sin(\theta)$
 0

 0
 $-i \sin(\theta)$
 $\cos(\theta)$
 0

 0
 0
 0
 $e^{i\phi}$

CZ/CNOT for $\varphi = \pi$

Brooks Foxen, ArXiv 2001.08343

Control Sequence

- General purpose algorithm
 - Cycle with 1- and 2-qubit gates
- Simultaneous gates all qubits
- Simplest circuit for quantum supremacy
 - Pseudo-random 1-qubit gates

A 50 II 50 C 50 D 50 C 50 D 50 A 50 II 50 A 50 II 50 C 50 D 50 C 50 D 50 A 50 II 50 A 50 II 50 C 50 D 50 SQ (pseudo-random)

Validation Algorithm for Quantum Supremacy

- Checks general-purpose circuit
- Randomly chosen gates: qubit speckle
 - Sensitive to single qubit errors
 - Complex & difficult to simulate

Quantum Supremacy Data

Quantum Supremacy Data

Quantum Science Results

- Same fidelity: full, elided, patch, predicted Errors NOT depend on entanglement and computation complexity!
- 1) No new decoherence physics: Probability prediction, Fidelity = Π_i (1- e_i) Error correction should work
- Quantum works at 2⁵³ = 10¹⁶ Hilbert space Previously tested to ~10³
- Test model of digitized errors One error gives zero fidelity Consistent with error probability Tests each gate (of ~500)

- 1. Compile chemistry to gubits
 - a. Hartree-Fock
 - b. Fermionic operators, 2nd quant.
 - c. Coupling sequence (swaps)
 - d. Suite of measurements, ...
- 2. Run quantum circuit for swap θ 's

- 1. Correct imperfections, to F~99%
 - b. Excitation loss
 - c. Measurement bias, ...
- 2. Variational optimization of θ 's

Google Al Juantum

Q-Chemistry on Sycamore

H₁₂ dissociation (Sycamore)

- Double the gubits/electrons as prior largest chemistry simulation
- More than 10X the number of gates

Technology Implications

Quantum Computers NOT a commodity: Performance matters greatly Breakthrough enables better performance in future devices Customers & programmers: Develop new supremacy algorithms 1 idea away from compelling application

The Team

Google Al Quantum

Simulation Cost

Improving Computer Simulation

- "We expect that lower simulation costs than reported here will eventually be achieved, but we also expect that they will be consistently outpaced by hardware improvements on larger quantum processors."
- Strongly support **running** validation programs
 - Tricky to write efficient supercomputer code, failures
 - IBM: non-standard use of disk memory
 - All data posted for checking
- Absolutely guarantee a 57+ qubit Sycamore processor
 - First processor successful
 - Did not collapse over finish line
- Distraction from real issue: quantum-hardware performance

Progress Towards Error Correction

