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The Cerebras Wafer
Scale Engine (WSE)

The most powerful processor for Al

46,225 mm? silicon

1.2 trillion transistors

400,000 Al optimized cores

18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process



WSE - 2D mesh of 400,000 fully programmable processing elements
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Leverage 400,000 tightly-connected cores to accelerate deep learning

* Use a blend of distribution strategies: all types of model parallel + data parallel
* Rely on model parallel first, as it doesn’t depend on batch size
* Add data parallel for small models

 Dynamically choose the execution strategy optimized for different models

Data parallel
Distribution across N .
different devices with ¢
traditional processors ¢

Model parallel, within a layer
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Leverage 400,000 tightly-connected cores to accelerate deep learning

* Use a blend of distribution strategies: all types of model parallel + data parallel
* Rely on model parallel first, as it doesn’t depend on batch size
* Add data parallel for small models

 Dynamically choose the execution strategy optimized for different models

T Data parallel

Distribution across
processing elements
of WSE
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Model parallel within a layer

Distribute execution of a single layer across multiple processing elements (PEs)

* Compiler chooses an optimal number of PEs and optimal shape for every layer
 Compute-heavy layers get larger PEs allocations
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Example: FC Layer (GEMV)

Input activation (X)
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PE

* Weights are stationary
* Each PE holds a tile of weight matrix

* Forward and backward pass share the
same set of PEs

Weight (W)

* Input activation comes in from
vertical/horizontal direction

e Output activation goes out from
horizontal/vertical direction
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Example: FC Layer (GEMV)
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® Olle olle olle O e Each PE works on a subset of input

® Olle olle olle O activation

@ O|l@ O||®@ O||e O * An input activation element is multiplied to
@ O||@ Ofl®@ O||l@ O a column of the weight matrix

® O||®@ Ol|@ O)jfé O * The results are accumulated to a set of

@ Of® Ojf@ Ofje O accumulators (that is reset at the beginning)
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Example: FC Layer (GEMV)

O

O-+@ * Each PE works on a subset of input

o-ollo-ello-e activation
O-0||0-0||0+0 * An input activation element is multiplied to

o-o||lo~ello-e a column of the weight matrix
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 The results are accumulated to a set of
O=»0||O»@®||O+0 accumulators (that is reset at the beginning)
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Example: FC Layer (GEMV)

* Each PE has a partial sum of a subset of
result (output activation)

e Partial sums are accumulated to
produce the final result

* Latency of partial sum accumulation is
mitigated with input activation
streaming (GEMM)
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Model parallel, layer-pipelined

Distribute execution of multiple layers across different fabric sections and keep entire model
in fast on-chip memory
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Model parallel, layer-pipelined

Distribute execution of multiple layers across different fabric sections and keep entire model
in fast on-chip memory

 Compiler maps layers to the fabric to optimize compute and communication
* Adjacent layers typically placed next to each other

Neural network
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Model parallel, layer-pipelined

Challenging on a traditional cluster:

* Limited communication between devices

* Work should be dividable into fixed units of compute
* ML researcher should choose optimal distribution

Traditional cluster
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Model parallel, layer-pipelined

Easy and efficient on CS-1:

* Low-latency high-bandwidth communication between all cores

* Flexible units of compute

* Cerebras compiler automatically chooses optimal distribution
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Data parallel

Replicate layers for higher performance on small models

* Use very small batch size (down to 1 sample) per replica
e Enabled by high bandwidth low latency local memory
* Result: medium effective batch size

* Place replicas on adjacent fabric sections
* Low synchronization overheads due to high-bandwidth low-latency connections between PEs

Neural network
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In summary — WSE uses a blend of parallel execution modes

* Single algorithm uses both model and data parallelism in optimization

* Execution strategies optimized for different neural networks

Few large layers: mostly model More layers: Few small layers:
parallel within each layer “more” layer-pipelined model parallel + data parallel
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In summary — WSE uses a blend of parallel execution modes

* Single algorithm uses both model and data parallelism in optimization

* Execution strategies optimized for different neural networks

But scale in deep learning is not only about efficient distribution...
it’s also about compute flexibility.
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Future path: larger and smarter models

100000

Brute-force scaling is historical path to better models.

* This is challenging 10000
 Memory needs to grow

* Compute needs to grow 1000

Forward GFLOPs

. e o o . . . 100
Algorithmic innovations give more efficient models.

 These are promising but challenge existing hardware. -

CS-1 delivers both. Extreme scale with fewer nodes. 1
Flexible compute for smarter, efficient models.
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* T-NLG
Megatron
T5-11B

GPT-2
* #T5-3B

» ALBERT xlarge

* BERT Large Compute grows

' Bjmy exponentially

Memory grows linearly
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Model size, millions of parameters



CS-1 is designed to unlock smarter techniques and scale

CS-1 has a data flow architecture

* Flexibility to stream token by token
* Inherent sparsity harvesting

CS-1 is a MIMD architecture

* (Can program each core independently
* Perform different operations on different data

CS-1 was built to enable the next generation of models otherwise limited today.
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CS + new techniques = efficient, extreme-scale models

Shared weights * + Same accuracy in only ~20%
eg ALBERT the size

Dynamic depth: FLOPs reduction:

- per batch . batels 115

- per sequence — * X pEtie c S

- pertoken * perseq: 20%

* pertoken: 50%
eg Universal Transformer

Activation sparsity Up to 50% FLOPs reduction at
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Eg dropout negligible accuracy loss
Attention sparsity — Attention cost

eg Sparse Transformers — * X 0(n?) - 0(ny/n)
Irregularity x Bigger bang for

eg Evolved Transformer * * parameter buck

@erebras

Cerebras Systems © 2020



Summary

Cerebras WSE is a 2D mesh of 400,000 programmable processing elements

Cerebras Graph Compiler can automatically choose the optimal blend of parallel
execution strategies for each given model

* No communication or memory bottlenecks due to local memory and high-
bandwidth, low-latency fabric

MIMD + data flow architecture provide unique flexibility to enable the next
generation of models

Performance of a cluster, ease of use of a single device,
and unique flexibility
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Thank you

natalia@cerebras.net



