
Peter Zhi Xuan Li, Sertac Karaman, Vivienne Sze

A Mutual Information Accelerator for 

Autonomous Robot Exploration

Massachusetts Institute of Technology

Website: https://lean.mit.edu/highlights/mutual-information

https://lean.mit.edu/highlights/mutual-information


Abstract1

Challenge
Computing the mutual information I(M;Z) is slow (high 

time complexity) and thus becomes the bottleneck of 

autonomous exploration system.

Robotic Exploration
Where should the robot move next to learn the 

most new information about its environment?

Occupancy Map Mutual Information (MI)

𝐻 𝑀 𝑍 = 𝐻 𝑀 − 𝐼(𝑀; 𝑍)

Theoretically Proven Approach
Move to the location that maximizes the mutual 

information between prospective range measurements and 

the map for faster mapping of the unknown environment.

Our Contribution

Proposed Multicore MI Accelerator

ü High-throughput: Computes the MI for the 

entire map of size 10.05mx10.05m with 

0.05m resolution for the first time at 11Hz on 

an ASIC (88x faster than a typical ARM CPU 

used on robotic racecar) while consuming 

only 164mW.

Benefits for Autonomous Exploration

ü Enables more optimal selection of exploration 

path, which reduces total exploration time 

and trajectory length.



• Applications for robotics exploration:

• Autonomous exploration requires the robot to produce a complete map of the 

environment in the shortest amount of time.

Motivation2

Search and rescue Space exploration



• Goal: explore and map the environment in the shortest amount of time

Autonomous Exploration3

Autonomous 
exploration with a mini 

racecar (4x speed)

Occupancy 
map with 

planned path

Bottleneck (~7s on CPU)
Ideally < 0.2s

Fast MI compute for the entire map = optimal selection for the next best scan location

Select candidate 
scan locations

Compute Shannon 
MI and choose best 

location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan? Mutual Information Updated Map

MI Map

Link to video: https://youtu.be/6Ia0conjKMQ

https://youtu.be/6Ia0conjKMQ


• Parallelism: each core computes MI for each single sensor beams by independently 

accessing the map every cycle

Hardware Design Challenge: Data Delivery to MI Cores4

Compute is limited by the bandwidth of the dual-port SRAMs that stores the map.

Core C

Core 1

Core 2

Core 3

MI
⋮

O
c
c
u

p
a
n

c
y
 m

a
p

 (
O
i)

Occupancy map

Core 1

Core 2

Core 3

Core C

⋮

+ MIOi



• Increasing memory bandwidth (read ports) by partitioning the map storage into multiple banks.

5

Proposed architecture includes:

1) Memory banking pattern that minimizes memory read conflicts among all cores.

2) Efficient arbiter that fairly and quickly manages the memory access requests of the cores.

Proposed Accelerator Architecture



Naïve Banking Implementation6

Memory access pattern at every cycle

Naïve vertical banking pattern always creates read 

conflicts for selected beams

Naïve implementation

Cores read the map at the same 

row or column every cycle.

• Challenge: memory access pattern is scan location and sensor angle dependent. 

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6



• Latin-square banking tile: cells in each column and row is assigned to different banks

Proposed Memory Banking Pattern7

We rigorously proved that Latin-square tiles usage minimizes read conflict among cores.

H

H

⋮

⋮

⋮

⋮

⋮

B

B

B

8 8 8

7 7 7

6 6 6

5 5 5

4 4 4 8

3 3 3 5 6 7

2 2 3 4

1 2 3 4 5 6 7 8

B

Occupancy Grid Map (H x H) Latin-square Banking Tile (B x B)

Bank 0

Bank 1

Bank 4

Bank 3

Bank 5

Bank 7

Bank 2

Bank 6



• Greedy & fair: Services up to 2 cores with the highest idle time / priority per bank

Operation of the Priority Arbiter8

Stage 1:
Extract up to 2 

requests with the 

highest priorities for 

each bank

Stage 2:
Grant these 

extracted 

requests 

(grey)

Stage 3:
Decrease the priorities of 

cores whose requests 

are granted (red) and 

accept next requests 

from these cores (blue) 

C
o

re
 I
n

d
e
x

1

2

3

4

5

6

7

8

Bank Address

5 10 6

6 14 5

5 13 6

5 7 4

6 15 7

3 20 5

2 11 6

5 2 4

Priority Bank Address

5 10 6

6 14 5

5 13 6

5 7 4

6 15 7

3 20 5

2 11 6

5 2 4

Priority Bank Address

5 19 5

7 13 4

1 12 5

5 7 4

7 12 6

4 2 4

7 7 5

5 2 4

Priority



• Fast: Critical path scales with O(log(C)), where C denotes the number of cores

Hardware Architecture for the Priority Arbiter9

C
o

re
 I
n

d
e
x

B
a
n

k

P
ri

o
ri

ty

Parallel Priority Queues 
(one per bank)

⋮

⋮

Bank B-1

Memory Requests

Bank 1

Bank 0

M
I 
C

o
re

 I
n

d
e
x

B
a
n

k

A
d

d
re

s
s

P
ri

o
ri

ty

Cores that should 
be serviced (blue)

Priority Arbiter

A
d

d
re

s
s



Results10

System Performance
System throughput (purple) at 91% of 

theoretical limit (dotted black line) 

ASIC Layout using 65nm Technology
Chip area: 2550umx2550um, Gates: 3 million

Core clock: 116.5MHz, Power: 164mW



ASIC Throughput & Power11

Compute Time per MI Map
13x faster for computing MI map of size 

201x201 on ASIC vs. NVIDIA Pascal GPU on TX2

System Power 
19x lower power on ASIC vs. ARM 

Cortex-A57 CPU on TX2

13x

19x



Summary12

P. Z. X. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-
throughput Computation of Shannon Mutual 

Information on Chip,” Robotics: Science and Systems 
(RSS), June 2019.

• Memory bandwidth limitation for MI computation is resolved by:

1. Provably optimal class of Latin-square banking patterns 

2. Greedy and fair priority arbiter

• Computes the MI for the entire map of size 201x201 for the first time at 90ms (< 7s on CPU) 

on an ASIC while consuming only 164mW.

• Real-time MI map computation allows the robot to choose the most optimal exploration 

trajectory in a theoretically proven exploration pipeline and reduce exploration time.

Website: https://lean.mit.edu/highlights/mutual-information

https://lean.mit.edu/highlights/mutual-information

