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Roadmap
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Neuroscience Inspired
Artificial Intelligence

Neuroscience has made
fundamental contributions
to advancing Al research.

Past contributions have
rarely involved a simple
transfer of full-fledged

solutions

Rather, neuroscience
has typically been useful
in a subtler way

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,":2* Dharshan Kumaran,'-3 Christopher Summerfield,’-* and Matthew Botvinick'-2

1DeepMind, 5 New Street Square, London, UK

2Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
3Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
4Department of Experimental Psychology, University of Oxford, Oxford, UK

*Correspondence: dhcontact@google.com

http://dx.doi.org/10.1016/j.neuron.2017.06.011
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Virtual environments accelerate Al but carry complexity ™ =™

Microcosms Stimulate Good to test Measure progress
of the real world intelligence in simulations and performance
Games are a proving By presenting a diverse Efficient, run thousands Measure progress and
ground for real-world set of challenges in parallel, faster than compare against human
situations real time performance

Virtual environments are rich substrates to progress Al Research. But their
increasing complexity demands commensurate technology infrastructure
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Atari with deep RL



http://www.youtube.com/watch?v=p4Kem0wQoHs&t=12

Complex planning in 3D environments

Find bat Pick up bat

Activate sensor with ball Walk through door
(opens door)

Hit ball off plinth
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baseball

R2D3
Tom Paine, Caglar Gulcehre et al
2019



https://docs.google.com/file/d/19nRE02-ARabC6sx3bRuVS4NfpNp6q0YC/preview

How does
this work?
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ML is about inferring knowledge from
observations or experiences, subject
to the physical laws of the world.

ML is also about using this
knowledge to guide observation
and hypothesis testing.

ML is about creating new
knowledge, using the present
knowledge, to solve a large diversity
of novel problems.
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ML Magic

= Largest possible network with
few general inductive biases.

=  Massive curated dataset. Clear goal.

=  Best existing communication,
memory and computation
infrastructure.




Supervised Deep Learning

Inferring knowledge
from observations.

Iron law of

Given pairs {inputs, outputs}

can now learn pretty much Deep Learning:

any function, subject to:

More is More.
(O enough data

O enough compute

O representative samples



Reinforcement learning
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Goal

Environment
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Making good decisions by learning from experience

Agent
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Deep RL uses deep neural nets as policies
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Making good decisions by learning from experience @



Value functions and optimal value functions

The value of being in a state and following a deterministic policy a; = m(0;)
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DeepMind

Example:
Data Driven
Robotics
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A framework for data—driven rObOtiCS Private & Confidential

NeverEnding
storage Reward Sketching

N e

Batch RL @

(Serkan Cabi et al., 2019)



Batch RL
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Demonstrations

Learning reward

(Serkan Cabi et al., 2019)
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NeverEnding storage

Contains:

e Different tasks

e Demonstrations
e Agents

e Random policies

e Failed experiments etc.
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http://www.youtube.com/watch?v=smfkS3notD4

NeverEnding
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(Serkan Cabi et al 2019)



Step 1: Demonstrations
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Step 2: reward sketching
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Task: stack green on red

-".. . & ‘OJ (» .
ey

Q00 -

O



AR
@ &_‘,{ g
Demonstrations a

NeverEnding

/storage \

Batch RL Learning reward

O

Serkan Cabi et al 2019



Learning reward
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Batch RL

Agent:
e D4PG
e Recurrent state
e Uses demonstrations
o 25% task specific in

each batch
Diverse data is cruciall!
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Evaluation

e Execute policy on
the robot

e Record episodes to
NeverEnding storage

Batch RL

Robot policy

o



[terative improvement

iteration 1

4

iteration 3

Demonstrations

Evaluatlon l /:/\ Reward sketchlng

Eo

Batch RL

\ J Learning reward
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Adversarial rObustneSS Private & Confidential
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http://www.youtube.com/watch?v=zOstwI5HnhU

Better than human teleoperators Private & Confidential

—

3x speed
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Handles non—scriptable Objects Private & Confidential
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http://www.youtube.com/watch?v=E8EtT0MVOpw

DeepMind

Example:
From AlphaZero to
GNNs
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Exhaustive search
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Value network
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Reduce depth with value network

m/ﬁ\m
/\ /\

PN T P P T P P PN
b 4
$

B EEEEEEEE ¢ ¢ e e
S S SS> 66 66 66 66 66

O



Poli
cy n
etwork
p
o (@ |s)

‘8 \Q__(')

o0

O



Reduce breadth with policy network
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AlphaZero: Learning without Human Knowledge

AlphaZero

Elo
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Model Based Reinforcement learning

Making good decisions by learning about the world
from experience and through imagination
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Goal

Learned Model

/ Predicted observations, \
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MuZero: Planning with a Learned Model

representation
prediction

dynamics
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Learning Models of the World

Graph Neural Networks

A general approach
to learning simulations.

Single GraphNets
architecture with single set
of hyperparameters

Learning to Simulate Complex Physics with Graph Networks
https://arxiv.org/abs/2002.09405 ‘q


https://arxiv.org/abs/2002.09405

Model Framework
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Private & Confidential

DECODER

GM— — Y

Extract dynamics info
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Results: Rollout over 1000 steps (initialized from timestep=0) ™~

Ground truth Prediction
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https://docs.google.com/file/d/1o2uIg6fNI_MxDiyidwjQvpoyEPyiXTXg/preview

DeepMind

We need huge
amounts of
compute.

But why?
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Algorithmic Scaling
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The Bitter Lesson

66

The biggest lesson that can
be read from 70 years of Al
research is that general
methods that leverage
computation are ultimately
the most effective, and

by a large margin.

Rich Sutton

http://www.incompleteideas.net/Incldeas/Bitterl esson.html

Private & Confidential

Unreasonable effectiveness
of computational scaling

e |arger networks generalize
better

e |arger networks train faster

e More Search and Planning
is better

Algorithms catch up (eventually)
but the gap is large.
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http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Algorithmic efficiency gains aren’t enough
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Demonstrating 44x less
compute required to achieve
AlexNet*-level performance
over / years.

This is huge. But it's not enough

https://arxiv.org/abs/2005.04305 b’



https://arxiv.org/abs/2005.04305

During the same period, compute demand increased >300,000X" """
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https://openai.com/blog/ai-and-compute/

HOW have We met the demand gap? Private & Confidential

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)
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https://openai.com/blog/ai-and-compute/

If growth holds then this isn’t sustainable long-term

Absolute limit is far off

>£1tn/yr in HW budget
Build out will continue
Sufficient economic incentive

Great progress still with small
models in production

Impacts may be seen soon

e Potential inaccessibility of
certain research to certain
groups

e |nability to progress certain
types of research

e lack of investment in
understanding auxiliary impact

Private & Confidential

HW Enabler of Al Research

e Increasingly harder problems

e Research peeking into future of
products

e Diversity of HW catalyzes new
research ideas

O



DeepMind

Three

Opportunities on
The Road Ahead
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Research At Scale Is About People

= Hundreds of Researchers

= Thousands of Experiments

= Millions of Program/Meta parameters
= Infinite Backlog

s 99% Throwaway!

Researchers

Experiments

Populations

HyperParameters

Controllers

Distributed Systems / Data

Math

Compilers

Runtimes / VMs

Networks / Systems

ML HW

o



Research Process as a System

Optimize for Throughput in the
whole system

Experiment Manager:

e complete view of past, present, m
future
e total control of scheduling and

placement w %

Results:

e 2X improvement in overall Utilization



Sustained Performance / TCO

=  Maximize Utility:
performed work / (cost of equipment + energy)
Most optimized research experiments: 70%
= Average research fleet wide peak FLOPs Utilization: 20%

= How could this be?

O



Sustained perf/$ is not Peak Device perf/$

=  Single Device Performance/Cost a weak predictor
of overall Perf/$

= Possible reasons for low Utilization:

Startup time
Memory bound
|/O starvation
Compiler issues
Contention
Runtime
Amdahl’'s Monster

OOO00O000O0

O



What to optimize for?

= Utilization is independent of Chip parameters
=  Chip performance does not matter

=  What matters is sustained system perf/$

= More opportunities to design top down from
DataCenter scale




Which Great Ideas for Warehouse scale Computer?

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE/SOFTWARE INTERFACE

Y, RISC-V EDITION

O



What to do
when there isn’t
plenty of room
at the bottom?

O



(Not so) Plenty of Room
at the Bottom

66

| don't know how to do this on a small scale

in a practical way, but | do know that computing
machines are very large; the fill rooms. Why can’t
we make them very small, make them of little
wires, little elements - and by little | mean little.
For instance, the wires should be 10 or 100 atoms
in diameter, and the circuits should be a few
thousand angstroms across.

Richard Feynman, 1959

What does a warehouse scale computer
look like when we’ve reached The Bottom?

Private & Confidential




What actually matters?

=  From first principles:

O Si
(O Power
(O Software

How far away are we
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True cost of operations

=  What if the WSC was built
just out of pure Si?

(O 1000X improvement
in perf/$

O



True cost of power

Surprise: power is still Si
(O 1000X more power/$
from pure Si + Sun

(until fusion?)
True cost of power:

%
%

WhistlingBird https://commons.wikimedia.org/wiki/File:Sili


https://commons.wikimedia.org/wiki/File:Silicon_solar_cell_(PERC)_front_and_back.jpg

50 year trends

= Components disappear into Si

=  Make up volume with more computers

i

il

Chips Packages Boards Racks



How do we bridge the 1000X gap?

= Move everything into Si (even if it costs more)

=  Only add components to the system that are

%

required

Exploit non-linearities in system properties

Number of distinct components
Rate of defects per area

3D stacking

Massless cooling

Automation

OO000O0
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Paradigm Shift

=  Producing an electric car is not just replacing the
combustion engine with an electric motor!

=  New rules for system design?

oLD NEW

(O Big complex chips (O Smaller simple chips

(O Bespoke, expensive (O Few components, all in Si

O Few (O Huge quantities

(O Fancy, reliable (O Cheap, less reliable

(O Control decisions in HW (O Control decision in software

O
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https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/Brewer_podc_keynote_2000.pdf
https://sites.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/Brewer_podc_keynote_2000.pdf

Simple designs are easy to scale up

Swanson's law
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Solar volume 1000X larger now than compute Silicon!



Where is the
Software floor?

O



Back to the 90’s

Cluster-Based Scalable Network Services

Armando Fox Steven D. Gribble Yatin Chawathe Eric A. Brewer

University of California at Berkeley Inktomi Corporation

= By 2000 we learned how to run
disaggregated services over
thousands of machines.

S Machine Learning systems also
run over thousands of Devices.

=  Qur software infrastructure stack
had to increase in complexity
to accommodate.

Paul Gauthier

Researchers

Vs

Experiments

N

Vs

Populations

N

HyperParameters

Vs

Controllers

Vs

Distributed Systems / Data

N

Vs

Math

N

Compilers

Vs

Runtimes / VMs

N

Vs

Networks / Systems

N

ML HW
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Where do performance/$
gains come from?

=  Big gains come from Paradigm Shifts
(O CPU->GPU->TPU

= Process Node improvements
are a wave we all ride on.

=  Put other way:

Major performance improvements
can only come at the expense
of creating significantly different systems.

7778



Where do performance/$ gains come from?

=  Gains from Paradigm Shifts are
eroded due to complexity and
inflexibility of the infrastructructure
stack.

Is there a solution?

o



What does diversity of HW matter?

=  Diversity of HW gives rise to
different research directions and
patterns of thought but is too
expensive to sustain due to high
per-platform software overheads.

Is there a solution?

o



This time it’s different?

%

%

Properties of Al Programs:

Highly regular

Constrained by dataflow

Constrained by arithmetic

Low amount of data dependent control flow
>ps timescales for basic operations

OO000O

Coarseness & Timescales allow for distributed
programs with software control.

O



This time it’s different?

=  Warehouse scale programs on
Warehouse scale computers?

=  What does this mean for compilers
and runtimes?

=  Opportunity to redo 70s, 80s and
90s research in systems and PL?

At MORGAN &z CLAYPOOL PUBLISHERS

< —

W The Datacenter asa Computer

/,JD z ning '*, caleMachines
Third Edition

=

Luiz André Barroso
Urs Holzle .

Parthasarathy Ranganathan

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Margaret Martonosi, Series Editor

O



This time it is different.

=  Optimization during compilation

. . MLIR Code Generation Flows
is about choices.

Tentative, Alex Zinenko’s snapshot

Input language

=  We are very good at making / Lang R @

choices now: .
LinAlg
(O Large scale RL MUR) e
. Dialects
(O Generative models Loop
LLVM IR D
= What will this buy us? \

LLVM conversion steps



This time it is different.

%

Radical slimming down of code base:

(O Multi-Purpose solutions

(O List of choices

(O Engine to decide which ones
to make

Greater adaptability. Easier to take
advantage of paradigm shifts.

Leading to greater research velocity.

o



Deep Learning for compilers ... the time has come?

2010: Speech recognition

2012: Computer vision

pixers —— (@ Beem e D Lasets
2014: Machine translation

TEXT ——> TEXT
2020: Compilers?

IR + TRACE—> — ISA

slide from V. Vanhoucke

o
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This time it could really be different!

New epoch in computing is bringing in new opportunities.

1 2 4

Al Research is a It is time start It is time to exploit It is time to

very exciting area focusing on whole economies of scale embrace advances

for systems design systems for HW in ML for the design
of software
infrastructure

Private & Confidential
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