Tenstorrent

Compute substrate for Software 2.0

Ljubisa Baji¢ and Jasmina Vasiljevic

? Tenstorrent

ML
VS.
comp ute

Moore’s Law

ML vs. Moore's Law (Optimistic)

10000000
1000000 100K*Moores Law (mega cluster) , ML compute demand
100000 === --TTTTTT
10K*Moores Law (Clgs_tgr_)
10000 em=======—7T7
- Optical, analog/nanowires
100
) — — Moore’s law
S
1 _———
2019 2020 2021 2022 2023 2024 2025 2026

——ML compute demand —e—Moore's law - 50%/yr

Tenstorrent

Scale out Dynamic Execution

ML vs. Moore's Law

20 Watts

2019 2020 2021 2022 2023 2024 2025 2026

Scale helps, but the only
long-term solution
is to change the slope of
the curve

ece@ee ML ompute demand ess=@u=== Moore's law -50%/yr

? Tenstorrent

? Tenstorrent

Scale Qut

Large Clusters are Already the Norm

= Shared memory architectures could not provide the required scale

= Many modern neural nets are trained and inferenced on clusters

= Many nodes with 4-16 GPUs
= Private memory space, explicit data movement

= Data parallel at first
= Sidesteps many communication/synchronization issues

= but model parallel has become necessary
= The full complexity of cluster programming is now exposed

Y Tenstorrent

-—

i

BiEY
bE

O [

Largest. Clusters. Ever.

= Networking + compute on each chip

= Computation directly on packets

= Packet routing controlled by graph compiler

= One device in Pytorch

Hundreds of thousands of nodes in cluster

2U system

, N
/ N
, \
, N
, \
/, \
, N
S/ N
N

/
/
’ \
/
/ N
/ N
/ N
/ N
, N
, \
/ \
/, N
N
S/ N
, N
, N
N
g \
’ \
‘. N
/ \
/ N
/ N
/ N
/ N
/ \
/ \

42U Rack Cluster

Shared Memory Machines

Stride 1

VN

SN

\ NN

~

/\
o[~
o/

= Each processing unit can see the full memory space

= A processor needs an array element: just issue a LOAD

= Tensor manipulations and views mostly reduce to
strided access to same buffer in memory

N
J

1]

Transpose

N
J

L

" Primary compiler challenge — loop nest optimization Y

? Tens

-
\

Stride 4

/N
_/]

o

Clusters and ML Chips Have Private Memory

Need XFER
between cores

Data is split up between nodes and no local view exists
= Data transfers explicitly managed

C 4 D
T ipulations -> inter-node co-ordination — —
= NSOr mani - - -
ernso anipuia . . C_ 2 o D
= Example transpose implementation: Al e - A
" Datatransfer betwe_en 1,0<>01 Node0,0 |3 2/ |5 0 NodeO0,1 Node0,0 |1 /2/|/2 4 NodeO0,1
= Transpose of local tiles e B ., B Ml i
Node10 |9 2[|[5 1] Node11 11@NSPOSE Noge10 [7 5]|/5 0] Node11
»6 44 ¥O 34 ;6 04 L 3
| . 5
Hard chall_gnges. o
= Data tiling and parallelization _
= Data transfers, synchronization

= Complexities with tensor manipulations
= Memory management

We solve them holistically
% Runtime
Tenstorrent =3

Tenstorrent confidential

Hardware

? Tenstorrent

Dynamic Execution
What is it?

Dynamic Execution

Control Flow Sparse Compute Dynamic Precision Runtime Compression
/Ié *s fp16 [h
‘ B ‘ ‘ E:WI \ E**’:;s l[Ne &'"%] fp32 fp32 8-bit 8-bit o
== EEEmmmm

Models that dynamically
choose subsets of blocks to
compute during each pass

Y Tenstorrent

Weights and activations

O(n) Matrix Mu

Weights/activations (dense)

Activations (dense) Result (dense)

Dense: O(n”3)

Tenstorrent

tiplication

Weights (dense)

EEgEEd e
S
i

Result (sparse)

Activations (dense)

Sparse: linear speed-up

Sparsity Max boost
50% 2X
90% 10X

Weights (dense)

m

= mm

Activations (sparse)

A
:
|
-

Result (sparse)

Chained sparse MM:
qguadratic speed up

Sparsity Max boost
50% ax
90% 100X

O(n) continued

= Generally applicable Il
= works for training and inference (unlike pruning) .
= models with general applicability (like GPT3) .

16x16 block .

" Requires models that dynamically choose subsets of blocks to

compute during each pass]

= Mixture of experts
= |LSH
= Pre-pass based

Result (sparse)

" Requires hardware that can realize full speed-up from block sparsity

Y Tensto

? Tenstorrent

The Full Stack Solution

Architecture & Software

y | poor4 || LPDDR4 || LPDDR4 || LPDDR4 |

Cluster On a Chip
52 E3 B3 E3 B3 3 53 B3 B3 B3 A 3

58 (53 (53 53 (A (58 (3 53 3 B3 B3 EA

58 (53 (53 53 (A (53 (3 3 53 B3 B3 EA

" 2D grid of cores
= 120 self contained cores

= Each core executing independent program

T T T T T T T T T T T T

= Network on chip
= 9D bi-directional torus | LPDDR4 || LPDDR4 || LPDDR4 || LPDDR4 |

= QOptimized for ML-workload

m—0O0T

- ConneCtiVity NoC BW 330 GB/sec
- PCIe PCle Gen3 x16
= DRAM)

Off-chip memory LPDDR4

Tenstorrent

Single Core

= Packet Compute
= Vector, SIMD
= Programmable & flexible compute
= Sparse compute

Packet Packet
Manager ey Compute

= Packet Manager
= Data transfers & storage N OC
= Tensor manipulation
= Dynamic compression

= Storage
= Local SRAM

= Access to DRAM 1MB

660 GB/sec R/W bw

3 TOPs (8-bit)

= 5 RISC cores 0.75 TFLOPs (16-bit)

= Powerful single-issue processor
= Runtime software

Bfloat, half-float, tf32
8-bit
Several custom formats, <=8-bit fp

Tenstorrent

Challenges of Connecting Compute Layers

Compute
B

\ Compute

= Parallelization A

= Splitting tensors amongst the cores
= Moving tensors between the cores

Compute
C

Compute
D

A y,
= Tensor Manipulation (TM) instructions Compound
= Reshuffle data in various ways >' Complexity
Tensor Manipulation
= Performance instructions
A
= Qverlapping compute & transfers r h

= Efficient utilization of NoC

= Efficient utilization of memory bandwidth

Y Tenstorrent

The Full Stack Approach

Parallelizes compute &
packetizes tensors

o

Dynamic memory Packet
management manager

Hardware

& Tenstorrent

Graph Compiler

Compilation Into Packets

= Packetization
= Packet headers: packet IDs & routing information

S QQ@ = No pointers, everything is expressed in terms of packet IDs

= Compute layer parallelization optimized by graph compiler

compiler
= NoCis visible to compiler

Compute

g
Mini-tensors
[] = Data movement & synchronization expressed explicitly by

\ Produces an Instruction Queue for the Packet Manager
o , = Packets re-ordered by NoC

single * In-line TMs

packet = Memory access patterns

Tenstorrent

Packet Manager

Single Core

s

e Packet Compute Engine

* Programmable device, flexibility

* Computes what Packet Manager feeds it
Packet e * Packet header triggers a program for the
packet

Manager Compute

v Tenstorrent

Packet Manager

* Tensor Manipulation Engine

* Reshape, transpose, concat, slice

* In-line, between compute & memory
Packet Manager * Dynamic packet compression
g N O D

Tensor * Data Transfer Engine
Manipulation e Multi-core synchronization
* Data dependencies, data hazards, data ready,
memory space ready

* Works with runtime software

Data Transfer

Engine
* Router
* Moves data across the NoC
/ * Back-pressure, guaranteed ordering, deadlock free
* Optimized multi-cast and gather operation for ML
workloads

Runtime Software

= Five RISC processors per core

= Dynamic memory allocation
Packet » Runtime buffer (de)allocation
Packet : = Runtime controlled memory target

Manager Compute
B = Data locality through SRAM
= Spills to DRAM and host

= Control flow
= jf-statements, for-loops, while-loops

= Decisions reflected by jumping around the Instruction Queue executed
by Packet Compute and Packet Manager

Tenstorrent

Flexible Scheduling & Parallelization

Pipeline Parallelism Model Parallelism

parallelization #4

| | |
parallelization #3 W

O] o pipeline Ipipeline ! pipeline ! pipeline
8 parallelization #2 stage 1 I stage 2 I stage 3 ! stage 4
g parallelization #1
: 7] O
o Clusters of nodes mapped 4 cores 4 cores
L'q:_) spatially onto the cores 9 cores 6 cores
o No. of Cor
o. of Cores Layers without data
s S ‘ dependencies run
- . . concurrentl
Combining multiple parallelization methods - L ¥
leads to higher utilization of large number of cores, pipeline pipeline
. . . stage 2 stage 1
resulting in higher performance ._‘.* A +
y/
) '—‘** B
pipeline pipeline 4
stage 3 stage 4 [C
4
N 2
B D

Tenstorrent

The Full Stack Approach

= High-performance through concurrency

: = Asynchronous cores: flexible parallelization & scheduling
Parallelizes compute &
packetizes tensors = Packet manager & Packet Compute overlap data transfers &

[] compute

= High memory utilization

= AQT graph compiler can not accurately predict buffer lifetimes
= Dynamic memory management compensates

Dynamic memory Packet
management manager

= Dynamic execution
= Runtime packet compression & data locality benefits
= Sparse compute
= Control flow graphs

Y Tenstorrent

Company Overview, Status
&

Plans

Company Overview

= Tenstorrent
= Founded in 2016
= ~70 employees in Toronto and Austin
= Equal mix of CPU, GPU, FPGA backgrounds

" Goals and targets

= ML inference and training
= Edge to data center
= General purpose high throughput parallel computation

? Tens

Jawbridge (2019)

ML processor

* 1channels of LPDDR4, PCIE g4 x4
* 4 core 000 ARC CPU, runs linux

* A4TOPS/1TFLOPS, 6MB SRAM

e 15W

000 CPU

Eﬂﬂﬂ
i

Compute core
[] Ethernet (100G)

| | DRAM interface

Tenstorrent

Grayskull (2020)

ML processor

8 channels of LPDDR4, PCIE g4 x16
4 core 000 ARC CPU, runs linux
368 TOPS / 92 TFLOPS, 120MB SRAM

65W

[teoors |[eoDra][LPobm4 |[LPDDR4 |

e ey
e ey
HENNNDNEDEDENNR
e e ey
) [l 3 A KD 53 K D A SR K 3
el el ool fefo]rd
e e ey
e ey
e ey
e e ey

[teoors |[tpoor4][PoDR4 || LPDDR4 |

- ==~
- - -=0-
Bl BN B
-
=N
Bl =N

B B B
B B B
- I-B-0-0-
- I-B-0-0-0-
=N S SN SN SN
- I-0-0-0-0-0-0-0-
- I-0-0-0-0-0-0-0-
- I-0-0-0-0-0-0-0-
- I-0-0-0-0-0-0-0-
- I-0-0-0-0-0-0-0-
-0 -0-0-0-H -
o3>

- I-f-0-0-0-

_.
=
=
”
-

_.
-
5
-
-
-
=
=
I
=
=
=

Evaluation with multiple large customers
Shipping this fall

Wormbhole (2021)

Network switch & ML processor

* Integrated network switch
* 16 ports of 100G ethernet
* 6 channels of GDDR6, PCIE g4 x16

* 4 core 000 ARC CPU, runs linux

[] []

DD DaaEp-

(] 15N (53 A (3 53 A A KA

]

E
A

P

7 R

3 c &
U

CEHEEEEEEEER

(7 15 (5N [I) I
[] []

65W Grayskull BERT Inference Performance

BERT BASE, SQUAD 1.1, fp16 — no conditionals 2,830
BERT BASE, SQUAD 1.1, fp16 + light conditional execution 10,150

E 3
BERT BASE, SQUAD 1.1, mixed precision, moderate conditional execution 23,345

Work in progress, BERT model modified with conditional execution

*" Tenstorrent

Software: Compiler generality

Key verticals:

Healthcare, Financials,
Ecommerce, Retail

Models ready:

BERT
ALBERT
GPT2

T5 LM
GNMT
Transformer

Electra

Vision/Imaging

Key verticals:

Retail, Security,

Automotive

Models ready:

Resnet50
DeepCoNN
Googlenet
Densenet
Inception
Alexnet

ResNext

SqueezeNet
Mobilenet
VGG

YOLO

SSD Resnet34

SSD
Mobilenet

Key verticals:

Gaming, Entertainment,
social media, ecommerce

Models ready:

= NCF

= DLRM

= Autoencoder

= Stacked denoising
autoencoder

Y Tenstorrent

Eval with customers

Public beta on our dev cloud
November 1st

Framework Integration + Deployment

O ¢
= Full Pytorch integration [pﬂ%ﬁch} [PYT“C“ Te"ﬁ””jW}
= Native device @X““‘f"/"
= Torchscript with full support for conditionals (€ ONNX)
= ONNX S 2
] @ Tenstorren
" A single device from PyTorch no matter the size of \]| Graph compiler
computer ']
@
= Automated deployment flow EIEIEIE
= Pre-trained models can benefit from Tenstorrent features EIEIEE
5 | O i

2U system

Tenstorrent

summary \\

= Scale and conditional computation to let ML models grow
&//:XN/

= Flexibility: run anything

= Usability: easy to use software, hiding all complexity of

programming clusters @P@

Y Tens

