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The exponential data growth problem

Humans are generating data at an
exponentially increasing rate.

Machine learning allows us to extract
useful information from data without
much human intervention.
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Did we solve the problem?
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Humans need a lot less data than machines

to generalize about and draw conclusions.
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Unsupervised learning
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Ref: https://babyology.com.au/; Doya et al. Curr Opin Neurobiol. 2000
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Probabilistic Machine Learning

Or also called Bayesian learning

Probability is used to represent uncertainty about the relationship being learned.
Our beliefs about the true relationship are expressed in a probability distribution.

For learning and prediction, 1|,
I B .ciceeser? ' .

_ Likelihood Data Prior
Bayesian Inference: \ + /
How one should update one’s beliefs upon observing data. @~ _Z.

‘ Bayes Theorem

Bayes’ theorem: .
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1. Online learning from small chunks
of scarcely or unlabeled data

Applications

Daily new reported
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2. Finding a distribution instead
of a point estimate
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Problem

autonomous driving CPUs and GPUs are inefficient for Bayesian inference

Finance

Ref: Dehning et al. Science 2020, Kendell et al. NeurlPS 2017

Autonomous Driving

3. Representing and computing
with uncertainty
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PGMA: Probabilistic Graphical Models Accelerator

* First silicon accelerator for Bayesian inference
e Algorithm-hardware co-design for parallel MCMC inference

 To demonstrates efficient mobile implementation of Bayesian inference
using unsupervised perceptual tasks

- Stereo matching
- Image restoration
- Image segmentation

- Sound source separation
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SM5: A 16nm SoC for ML-Powered lIoT Devices

*TSMC 16nm FFC

*25mm?2 (5mm x Smm) SoC
‘PGMA die area: 2.3mm x 1.3mm
‘Designed using CHIPKIT

‘Short design cycle: RTL to tape-out in 3
months by 5 people (2 postdocs + 3 PhDs)

100 168t

Ref: Ko et al., VLSI 2020. Whatmough et al. IEEE Micro, 2020.




Harvard ML Research Platform + CHIPKIT
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«SoC platform for architecture and systems research
- CHIPKIT: Agile research test chip design methodology
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SM5 SoC Architecture

Embedded FPGA (eFPGA) Arm Cortex-A53 CPU (A53)
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Models, Inference and Applications

Model i

Markov Random Field (MRF) - A generalization over Ising model

Various other probabilistic models (HMM, regression, etc.)

Inference
Gibbs sampling - A Markov Chain Monte Carlo (MCMCQC) algorithm derived from statistical
physics

Application

computer vision, audio processing, combinatorial optimization, computational biology,
recommender system, topic modeling, etc.
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Example: Image restoration

100 168t




Mapping to Markov Random Field (MRF)

Markov Random Field

Input pixels (U (U

(Pixel-labeling)

——
-
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Damaged Image.
@ Unsupervised Learning

Reconstructed image Output labels
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Gibbs sampling on MRF

{ ) Observed node

(O Neighbor Node

Sequential Gibbs Sampling

while ( < max Gibbs sampling iterations)
for each node in an image
sample()
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Why is it hard to accelerate?

Gibbs sampling on MRF

. Initialize 1Y

. fort =0to 7T do _ _
for i =0 to N do Sampling depends on the previous state

2 o Py 2 W )y and the dependency on previous loop

north’® “south’® ~“west’» *“east

end for iteration makes parallel programming hard

end for
return z

N A A




Gibbs Sampler (GS)
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Two-levels of parallelism

Asynchronous Gibbs sampling:
Sample_v different tiles in parallel as if they are separate images

Two-level Parallel Gibbs Samplij

while ( < max Gibbs sampling jfefations)

for each tile in an image

while ( < max tile sampling iterations )
for each node in a tile

sample()

Chromatic Gibbs sampling:
Sample conditionally independent nodes concurrently
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PGMA: Probabilistic Graphical Models Accelerator

Sub-Graph Tile (SGT) Sub-Graph Tile (SGT)
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640x480
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Ref: Ko et al., VLSI 2020 v




Unsupervised perceptual tasks
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X Four example applications:
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Multi-threaded Server-Class CPU

Threads vs. Speedup

< 6X speedup

| | | | | |

0 10 20 30 40 50 60
Threads

Machine: Intel(R) Xeon(R) CPU E5-2697A v4
Parallelism: Chromatic Gibbs sampling T
Application: Stereo matching - 16 labels




Comparison with off-the-self embedded platforms

Nvidia Jetson TX2 Xilinx Zynq ZCU102

NVIDIA.

48x throughput improvement per Watt 247x throughput improvement per Watt
(2108x vs Arm A57, single-thread)

Parallelism: Chromatic Gibbs sampling
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Ref: Ko et al., FPL, 2020. Ko et al. VLSI, 2020




SoC Results: vs. A53 and eFPGA
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SoC Results: vs. A53 and eFPGA

MSamples/s per Watt per mm?2

Achieves 4162x throughput per Watt per mm2
over Arm A53
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Scaling within SGT

Sub-Graph Tile (SGT) Can add GS’s for linear increase in throughput
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Summary

‘PGMA - Probabilistic Graphical Models Accelerator
- First silicon Bayesian inference accelerator.
- Can run various probabilistic models including MRF, HMM and more.

- Solves various applications including computer vision, audio processing, recommender systems,
topic modeling, combinatorial optimization, etc.

-Scalable Bayesian inference accelerator architecture

- Algorithm-hardware co-design to enable parallelism in natively sequential algorithm.
- Hierarchical architecture with two-levels of parallelism.

- Energy-efficient mobile implementation for real-time unsupervised perceptual tasks.
- Stay tuned for server-class version for cloud applications.

‘Rapid research SoC design and implementation using CHIPKIT
- Harvard’s open-source framework for chip design and testing.
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