Hot Chips: A Symposium on High Performance Chips

arm

A Technical Overview of
Cortex-M55 and Ethos-U55:
Arm’s Most Capable Processors
for Endpoint Al

Allan Skillman, Distinguished Engineer, Arm-
Tomas Edso, Senior Principal Engineer, Arm
August 2020

© 2020 Arm Limited

: - »
Many New loT Devices Require Siaarrocessing -

Traditional signal processing

PDM
interface

Feature
extraction

Automatic
gain control

Beam-
forming

Noise
cancellation

Neural Keyword
network detection §

3o outputs

o

A conceptual SRR Machine learning
smart speaker - T o

\'\} 2 © 2020 Arm Limited

How to Add More Processing Performance to Cortex-M

... without burning too much power?

Instruction fetch

. . and issue
* Adding Neon (as in Cortex-A & some Cortex-R processors)? 1
- Need an area efficient solution, but SIMD is nice SIMD Decode
- Implication to real-time (interrupt latency) Execttion
unit
L)
¢ S u pe 'SCa I d r? Single execution pipeline with

vector processing

- We already have Cortex-M7 (dual issue), but we need more
- E.g. Limited data type support

VLIW (Very Long Instruction Word)

* VLIW as in Digital Signal Processor? | Instruction fetch and issue |
* No, it breaks compatibility . : , v ,
. | Decode I ‘ Decode | | Decode | I Decode | | Decode |
- Need extensive tool support T T i T T
Execution|||Execution|||Execution|||Execution| | |Execution
unit unit unit unit unit
L J
'

3 © 2020 Arm Limited 2 to 5 execution slots q r m

Solution — Helium and Cortex-M55 Processor

Based on a new SIMD instruction set designed for Cortex-M processors

Vector processing e
- 8 vector registers, 128-bit wide, reuse FPU registers CORTEX®-M55
- Over 150 new instructions (>130 vector instructions)

TrustZone for Armv8-M

Nested vectored Woake-up interrupt
interrupt controller controller

* Versatile processing capabilities -
- Vectored Integer / Fixed-point : 32-bit, 16-bit, 8-bit
- Vectored Floating-point : Single precision, half precision arithmetic

Performance
monitoring unit

Memory

protection unit Heliym

Coprocessor

FPU I-TCM, Peripheral

- Scalar Floating-point : Double, single & half precision arithmetic interface D-TCM AHB

Arm Custom AXI-5 Interface
5 DSP :
Instructions master protection

. . . JTAG/SEFia[ECC RAS |-cache,
* Highly configurable design WG D-cache
. . . Brezl;?to ing ETM trace ITM trace wattc) f\:;int
* Optimized memory system design

* TrustZone Secu”ty Extension (Arm Custom Instructions available from 2021)

4 © 2020 Arm Limited q rm

Processor’s Vector Pipeline and Datapath

* A balance between performance and power
« Double ALU area, >4x performance
- Suitable for short pipeline

32-bit datapath 64-bit datapath 128-bit datapath
(single beat) (dual beat) (quad beat)

—

Cortex-M55 processor
(2 cycles per 128-bit vector)

* Overlapping instruction execution to enable higher processing efficiency

Cortex-M55 supports

Clock

cycle
(Ve d s AR Lower 64-bit Upper é4-bit 2x Q31/int32 |
Ve :
Vector MAC (VRMLALVH) Lower 64-bit - Upper 64-bit 4x Q15/int16 Per
Vector load (VLDR) Lower 64-bit Upper 64-bit 523X gg/zmts — O(l:k
b 4 bit : X Tp cycle
Vector MAC (VRMLALVH) Lower 64-bit Upper 64-bit ax fpl6 B Y

Time

5 © 2020 Arm Limited a rm

Memory System Design

Re q U i re m e ntS ‘D:‘EPTS(IZE:\:e Cortex-M55 processor
- Real-time, low latency - TCMs | A two-level (64-bit)
° General purpose - Caches memory System | Processor internal core
|-side D-side
I-TCM ‘ (32-bit) (64-bit) 39-bit
. . R (32-bit) AHE;
- 64-bit data read/write bandwidth e . >
- 32-bit instruction fetch bandwidth o e
- Up to two separated data R/W (scatter gather) prom 2 Y e
. . * 32-bit AHB slave for debu
» 64-bit bandwidth for DMA accesses to TCM “ < accesses (32-bit)
- ‘ dReal—ti_mfe/.
No dedicated DSP memory ports e e | oot e
- TCMs are part of system memory map (C/C++ friendly) (mi‘,’n?,?i'l;iiﬂcy)
Non-deterministic

- Upto 16MB I-TCM and 16 MB D-TCM

AXI master interface

- DMA controller can access to TCM via AHB slave port

6 © 2020 Arm Limited

64-bit
AXI

TCM: Tightly Coupled Memory

arm

DSP-oriented Processing Support

‘DSP’ features Cortex-M55 and Helium

Zero overhead loops

Low overhead branch extensions

Complex number processing

Complex number processing

Circular buffer

Scatter-gather memory access with instruction for circular
address generation

Bit reverse addressing

Scatter-gather memory access with instruction for bit-reverse
address generation

Dedicated DSP data memory interface

Multiple TCM interface to support vector memory accesses +
pipeline optimization

Interleave data accesses

Interleave data accesses

7 © 2020 Arm Limited

arm

Arm Cortex-M55 Processor Performance

Normalized performance

(higher is better) Average performance per datatype for selected CMSIS-DSP kernels vs the Cortex-M4 processor
18
16
14
12
10
8
6
4
2

o mEE . - . .

Q7 Q15 Q31 floatl6 float32
8-bit fixed-point 16-bit fixed-point 32-bit fixed-point 16-bit half precision floating-point 32-bit single precision floating-point

M Cortex-M4 ® Cortex-M33 m Cortex-M55 Cortex-M7

* Average DSP kernel performance comparison across supported data types
* Relative to Cortex-M4 cycle count

* All data at ISO frequency

Cortex-M55 performance. Subject to change.

8 © 2020 Arm Limited
m FFT: 256 point, FWD direction and bit reversal enabled // FIR: 256 blocks, 32 taps // matrix sizes: 32, vector lengths: 256 // Biquad Samples : 256 // Biquad Cascade : 4 a r m

Keyword Spotting for Low-power Voice-activated Devices

Cortex-M55 processor achieves low system
power for KWS

Structure of KWS algorithm
Feature extraction: MFCC (FFT-based coefficient extraction)
- 40ms frame size, 16kHz, 10 features
NN based classification: 2 convolution layers and 3 fully
connected layers
- Possible NN architecture includes DNN, CNN, RNN
(LSTM/GRU)
NN size can be designed and optimized for different HW
budgets
- 8-bit weights and 8-bit activations
- 80-500 KB memory, 6 - 80 Million Operations per second
- Accuracy ranges from 90% - 95%

KWS algorlthm publicly available now
KWS paper including description of the
network: https://arxiv.org/abs/1711.07128
KWS Github link: https://github.com/ARM-software/ML-KWS-
for-MCU/

9 © 2020 Arm Limited

Efficient compute capabilities in next
generation Cortex-M

Relative performance uplift

Simulation results of total KWS algorithm
on Cortex-M CPUs

Cortex-M4 Cortex-M33 Cortex-M55 Cortex-M7

Cortex-M55 performance results are based on RTL and C compiler
in development. Subject to change.

Cortex-M4/Cortex-M7/Cortex-M33 using AC6.10 a r m

Broadest Range of ML-optimized Processing Solutions

Cortex-A, Mali and
Ethos-N

Cortex-M55 and
Ethos-U55

Cortex-M55

Cortex-M today

-l r—lr—lrﬂrﬂlf\rﬂ
2 & T L o8| A N = S

]

Vibration Sensor Keyword Anomaly Object Gesture Biometric Speech Object Real-time
detection | fusion i detection | detection | detection | detection | awareness | recognition | classification : recognition

»
»

Data throughput

TOP/s

10 © 2020 Arm Limited a rm

Ethos-U55 Overview

* Works alongside Cortex-M55, Cortex-M7,

Cortex-M33 and Cortex-M4 processors Ethos-U55
e Works alongside on-chip SRAM and Weight decoder
system flash Cortex-M CPU
Central
e Accelerates CNN and RNN operators Control
* Efficient weight compression Mac Engine
e 8- or 16-bit activations | I |
* 32,64, 128 or 256 MAC/cc configurations
Shared Buffer
System System DMA
Flash SRAM
Elementwise
engine

11 © 2020 Arm Limited a r m

Typical Ethos-U55 Data Flow

12

An offline compiled command stream
with corresponding compressed weights

are put into system Flash.
Input activations are put into system

SRAM.

The host starts Ethos-U55 by defining all
memory regions to be used, in particular
the location of the command stream and
input activations.

Ethos-U55 autonomously runs all
commands, using SRAM as a scratch
buffer. Results are written to a defined
SRAM buffer.

Interrupt on completion of writing the
result.

© 2020 Arm Limited

2
—
/ \ Ethos-U55
Weight decoder
Cortex-M CPU 4
- Central
S~
1 Control
Mac Engine
|
I I
3
A Y
_ Shared Buffer
System System [T~k pva
Flash SRAM
0 - . Activations Elementwise
engine

arm

Ethos-U55 Interfaces

» 32-bit APB slave for registers access

* Two AXI master interfaces
« MO: Full read+write AXI master to SRAM
« M1: Read only AXI master to flash

e Q-channel for clock control
* Q-channel for power control

e |RQ for signaling to host

13 © 2020 Arm Limited

CLK

\ 4

PWR

A 4

APB

IRQ

\ 4

a

AXI5

\ 4

AXI5

A

\ 4

Ethos-U55
Weight decoder
Central
Control
Mac Engine
Shared Buffer
DMA

Elementwise

engine

arm

Network Support in Ethos-U55

* Ethos-U55 supports a fixed set of operators and can completely execute networks that

map to that operator set. For example:
- ResNext50
- Wav2letter

Application TFL micro Driver Ethos-U55

* For networks that cannot be executed on Ethos-U55 completely, the operators

unsupported by Ethos-U55 fallback to the attached Cortex-M processor
- These are accelerated through CMSIS-NN library
- For many of the popular networks ‘Softmax’ is the only operator that falls back on the processor

Driver Ethos-U55 For many popular
networks, Ethos-U55

executes all layers
CMSIS-NN Cortex-M except ‘Softmax’

Application TFL micro

14 © 2020 Arm Limited a r m

Ethos-U55 Optimized Software Flow

Target/ Device

Host (Offline)
TF Quantization EthO.S-U55 Ethos-USS
» tooling » TFL flat file — Driver microNPU
TOCO

CMSIS-NN

Optimized
Kernels

Ref. Kernels

Cortex-M
CPU

TFLu Runtime

Linked platform runtime

* Runtime executable file on device

Accelerates kernels on Ethos-U55. Driver handles
the communication
* The remaining layers are executed on Cortex-M

e CMSIS-NN optimized kernels if available
* Fallback on the TFLu reference kernels

TFL: TensorFlow Lite CI rm

e Train network in TensorFlow
* Quantize it to Int8 TFL flatbuffer file (.tflite file)
* NN Optimizer identifies graphs to run on Ethos-U55

e Optimizes, schedules, and allocates these
graphs
* Lossless compression, reducing size of tflite file

15 © 2020 Arm Limited

Example Use Case —Smart Speaker

* Cortex-M55 for keyword wake-up, audio processing
e Ethos-U55 for Automatic Speech Recognition (ASR)

Voice Wakeup word
detected detected

Lo
it

Voice
VAD (Voice Activiti e
Detection) Beam forming

Sound input

|

KWS (Key word Audio
spotting playback
Wakeup Network stack
Reduced clock speed High clock speed
‘ Ll |

>
v
Ethos-U55 ASR (Automaft!c Speech
Recognition)

Time Ethos-U55 activated

16 © 2020 Arm Limited - a rm

Example: Typical ML Workload for a Voice Assistant

Speed to inference Energy efficiency

50x v’ Faster responses

v" Smaller form-factors

v Improved accuracy

Cortex-M7 Cortex-M55 Cortex-M55 Cortex-M7 Cortex-M55 Cortex-M55 Latency and energy spent for all tasks listed
combined: voice activity detection, noise cancellation,
+ Ethos-U55 + Ethos-U55 two-mic beamforming, echo cancellation, equalizing,

mixing, keyword spotting, OPUS decode, and
automatic speech recognition.

17 © 2020 Arm Limited a rm

Summary

e (Can a Cortex-M Processor be built and tuned to do DSP and
ML?

Arm

, , _ Cortex-M55
Yes. Helium approach can get a good performance, while still...

- Maintain software compatibility (able to run software for previous
Cortex-M devices)

- Satisfy the embedded market’s requirements (real-time, ease-of-use, low
power, security and more)

- Uncompromised power performance

e With Cortex-M55 + Ethos-U55 processors Arm
- Best performance on embedded Al Fthos-U55

18 © 2020 Arm Limited a rm

a r'm L ~ Thank You

DERLG
Merci
B
HYHED
~ Gracias
. Kiitos
AL T}
Yddiq

‘4 NS

Find out More:
Cortex-M55:
Ethos-U55:

ATIN

© 2020 Arm Limited

"The Arm trademarks featured in this presentation are registéred
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

+ } + +

www.arm.com/company/policies/trademarks

