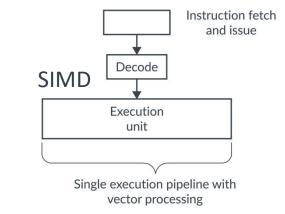
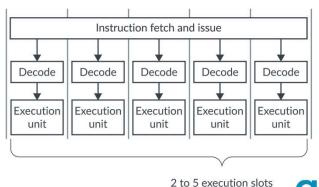

arm

Hot Chips: A Symposium on High Performance Chips

A Technical Overview of Cortex-M55 and Ethos-U55: Arm's Most Capable Processors for Endpoint Al

Allan Skillman, Distinguished Engineer, Arm Tomas Edsö, Senior Principal Engineer, Arm August 2020

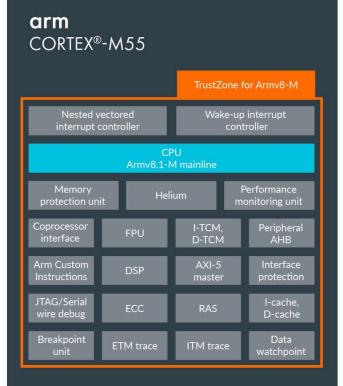

Many New IoT Devices Require Signal Processing + ML



How to Add More Processing Performance to Cortex-M

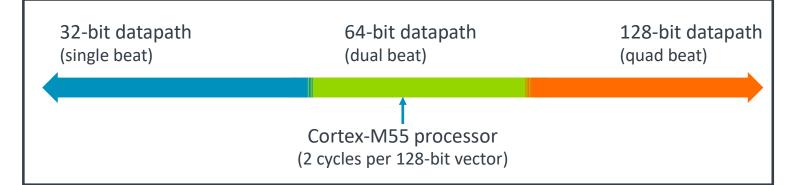
... without burning too much power?

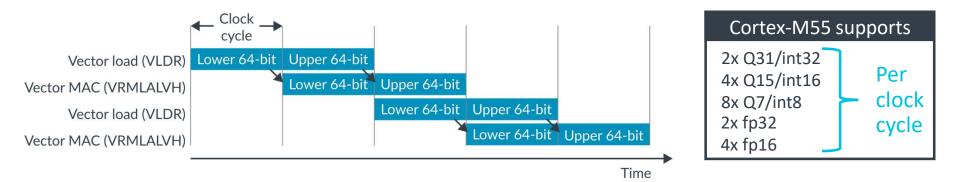
- Adding Neon (as in Cortex-A & some Cortex-R processors)?
 - Need an area efficient solution, but SIMD is nice
 - Implication to real-time (interrupt latency)
- Superscalar?
 - We already have Cortex-M7 (dual issue), but we need more
 - E.g. Limited data type support
- VLIW as in Digital Signal Processor?
 - No, it breaks compatibility
 - Need extensive tool support


VLIW (Very Long Instruction Word)

Solution – Helium and Cortex-M55 Processor

Based on a new SIMD instruction set designed for Cortex-M processors

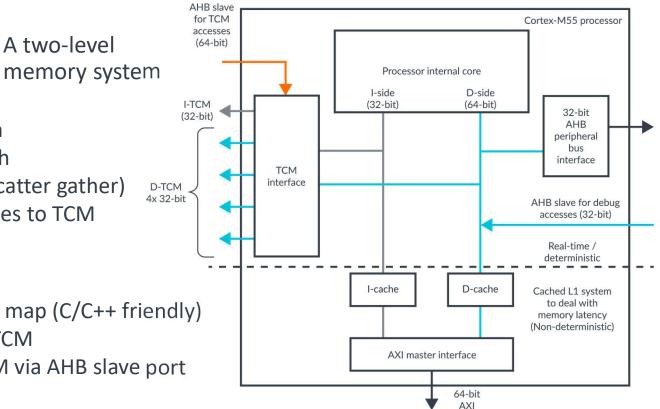

- Vector processing
 - 8 vector registers, 128-bit wide, reuse FPU registers
 - Over 150 new instructions (>130 vector instructions)
- Versatile processing capabilities
 - Vectored Integer / Fixed-point : 32-bit, 16-bit, 8-bit
 - Vectored Floating-point : Single precision, half precision arithmetic
 - Scalar Floating-point : Double, single & half precision arithmetic
- Highly configurable design
- Optimized memory system design
- TrustZone Security Extension


(Arm Custom Instructions available from 2021)

Processor's Vector Pipeline and Datapath

- A balance between performance and power
 - Double ALU area, >4x performance
 - Suitable for short pipeline

• Overlapping instruction execution to enable higher processing efficiency


Memory System Design

Requirements

- Real-time, low latency TCMs A two-level
- General purpose caches
- 64-bit data read/write bandwidth
- 32-bit instruction fetch bandwidth
- Up to two separated data R/W (scatter gather)
- 64-bit bandwidth for DMA accesses to TCM

No dedicated DSP memory ports

- TCMs are part of system memory map (C/C++ friendly)
- Up to 16MB I-TCM and 16MB D-TCM
- DMA controller can access to TCM via AHB slave port

TCM: Tightly Coupled Memory

DSP-oriented Processing Support

'DSP' features	Cortex-M55 and Helium
Zero overhead loops	Low overhead branch extensions
Complex number processing	Complex number processing
Circular buffer	Scatter-gather memory access with instruction for circular
	address generation
Bit reverse addressing	Scatter-gather memory access with instruction for bit-reverse
	address generation
Dedicated DSP data memory interface	Multiple TCM interface to support vector memory accesses +
	pipeline optimization
Interleave data accesses	Interleave data accesses

Arm Cortex-M55 Processor Performance

Average performance per datatype for selected CMSIS-DSP kernels vs the Cortex-M4 processor (higher is better) 18 16 14 12 10 8 6 4 2 0 Q7 Q15 Q31 float16 float32 32-bit fixed-point 16-bit half precision floating-point 16-bit fixed-point 32-bit single precision floating-point 8-bit fixed-point Cortex-M33 Cortex-M55 Cortex-M7 Cortex-M4

- Average DSP kernel performance comparison across supported data types
- Relative to Cortex-M4 cycle count
- All data at ISO frequency

8

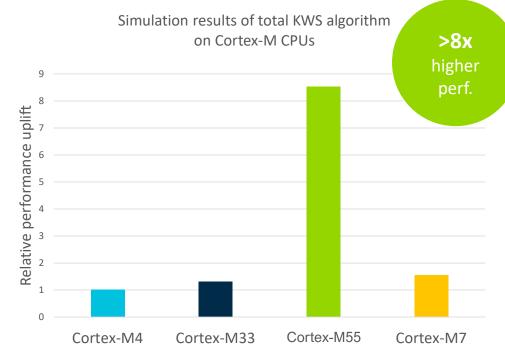
Normalized performance

Cortex-M55 performance. Subject to change.

© 2020 Arm Limited FFT: 256 point, FWD direction and bit reversal enabled // FIR: 256 blocks, 32 taps // matrix sizes: 32, vector lengths: 256 // Biquad Samples : 256 // Biquad Cascade : 4

Keyword Spotting for Low-power Voice-activated Devices

Cortex-M55 processor achieves low system power for KWS

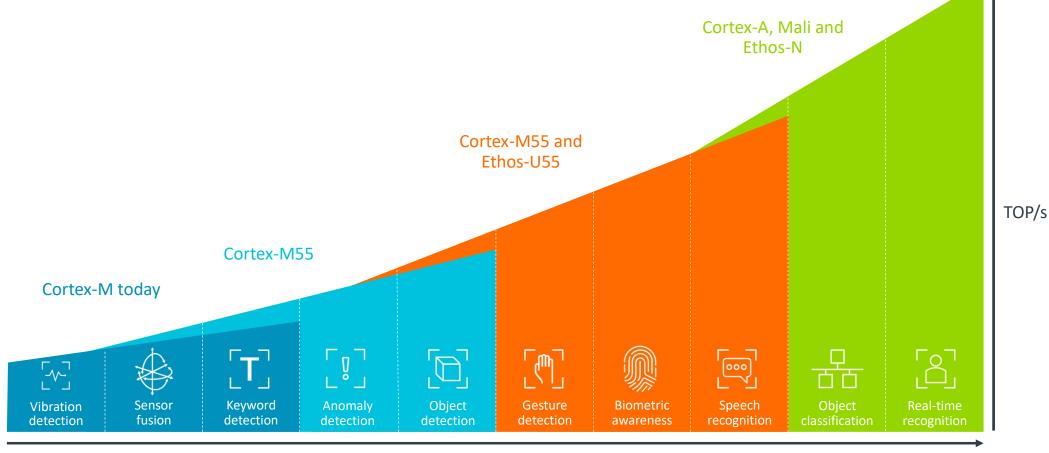

Structure of KWS algorithm

- Feature extraction: MFCC (FFT-based coefficient extraction)
 - 40ms frame size, 16kHz, 10 features
- NN based classification: 2 convolution layers and 3 fully connected layers
 - Possible NN architecture includes DNN, CNN, RNN (LSTM/GRU)
- NN size can be designed and optimized for different HW budgets
 - 8-bit weights and 8-bit activations
 - 80-500 KB memory, 6 80 Million Operations per second
 - Accuracy ranges from 90% 95%

KWS algorithm publicly available now

- KWS paper including description of the network: https://arxiv.org/abs/1711.07128
- KWS Github link: <u>https://github.com/ARM-software/ML-KWS-for-MCU/</u>

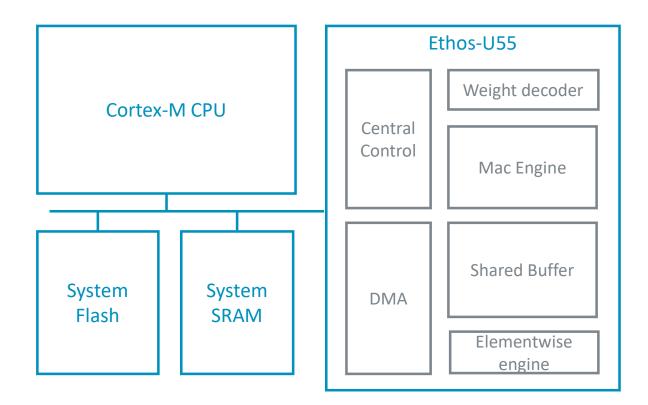
Efficient compute capabilities in next generation Cortex-M



Cortex-M55 performance results are based on RTL and C compiler in development. Subject to change.

Cortex-M4/Cortex-M7/Cortex-M33 using AC6.10

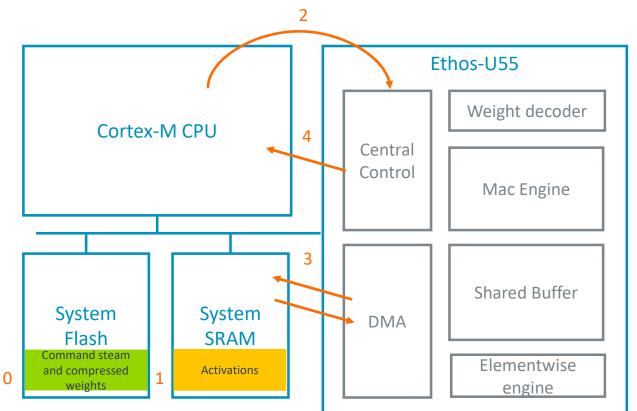
Broadest Range of ML-optimized Processing Solutions


Data throughput

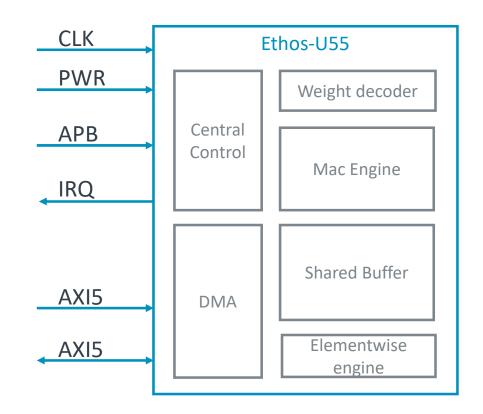
10 © 2020 Arm Limited

arm

Ethos-U55 Overview


- Works alongside Cortex-M55, Cortex-M7, Cortex-M33 and Cortex-M4 processors
- Works alongside on-chip SRAM and system flash
- Accelerates CNN and RNN operators
- Efficient weight compression
- 8- or 16-bit activations
- 32, 64, 128 or 256 MAC/cc configurations

Typical Ethos-U55 Data Flow

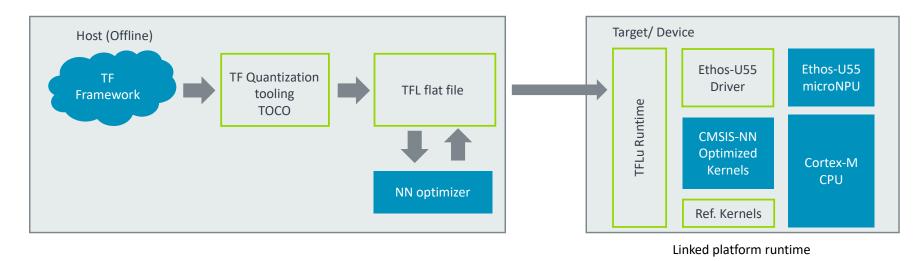

- An offline compiled command stream with corresponding compressed weights are put into system Flash.
- 1. Input activations are put into system SRAM.
- 2. The host starts Ethos-U55 by defining all memory regions to be used, in particular the location of the command stream and input activations.
- 3. Ethos-U55 autonomously runs all commands, using SRAM as a scratch buffer. Results are written to a defined SRAM buffer.
- 4. Interrupt on completion of writing the result.

arm

Ethos-U55 Interfaces

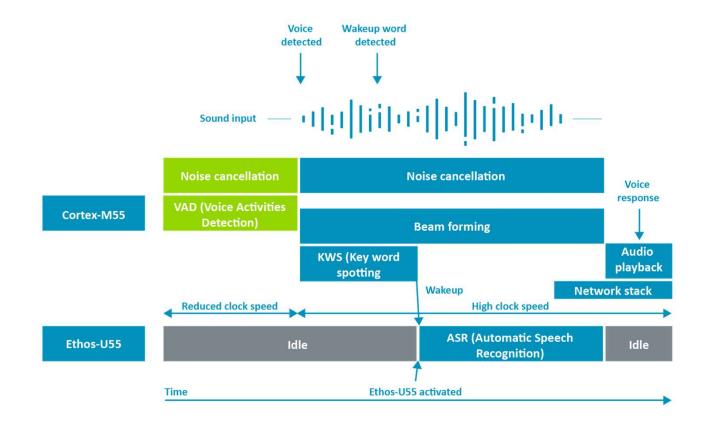
- 32-bit APB slave for registers access
- Two AXI master interfaces
 - M0: Full read+write AXI master to SRAM
 - M1: Read only AXI master to flash
- Q-channel for clock control
- Q-channel for power control
- IRQ for signaling to host

Network Support in Ethos-U55

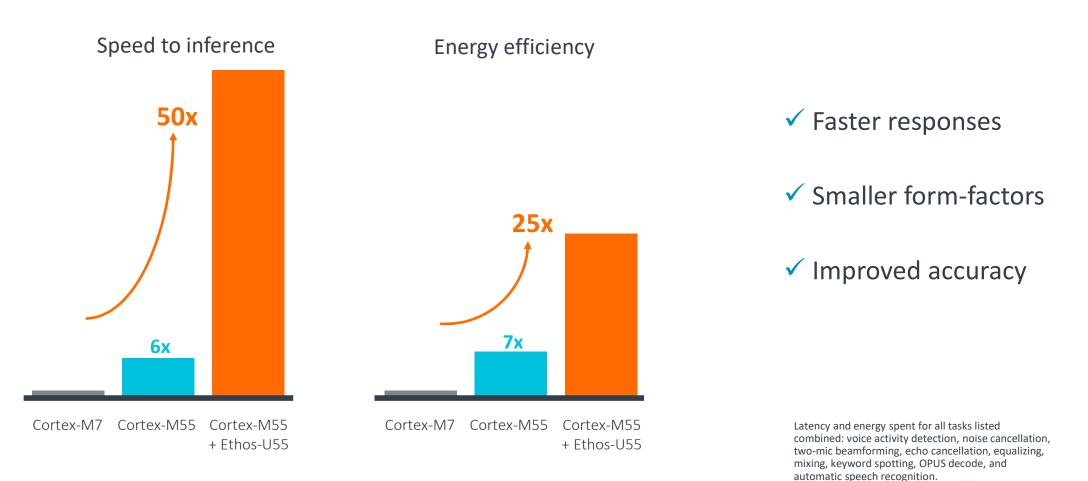

- Ethos-U55 supports a fixed set of operators and can completely execute networks that map to that operator set. For example:
 - ResNext50
 - Wav2letter

- For networks that cannot be executed on Ethos-U55 completely, the operators unsupported by Ethos-U55 fallback to the attached Cortex-M processor
 - These are accelerated through CMSIS-NN library
 - For many of the popular networks 'Softmax' is the only operator that falls back on the processor

Ethos-U55 Optimized Software Flow


- Train network in TensorFlow
- Quantize it to Int8 TFL flatbuffer file (.tflite file)
- NN Optimizer identifies graphs to run on Ethos-U55
 - Optimizes, schedules, and allocates these graphs
 - Lossless compression, reducing size of tflite file

- Runtime executable file on device
- Accelerates kernels on Ethos-U55. Driver handles the communication
- The remaining layers are executed on Cortex-M
 - CMSIS-NN optimized kernels if available
 - Fallback on the TFLu reference kernels


Example Use Case – Smart Speaker

- Cortex-M55 for keyword wake-up, audio processing
- Ethos-U55 for Automatic Speech Recognition (ASR)

arm

Example: Typical ML Workload for a Voice Assistant

Summary

- Can a Cortex-M Processor be built and tuned to do DSP and ML?
 - Yes. Helium approach can get a good performance, while still...
 - Maintain software compatibility (able to run software for previous Cortex-M devices)
 - Satisfy the embedded market's requirements (real-time, ease-of-use, low power, security and more)
 - Uncompromised power performance
- With Cortex-M55 + Ethos-U55 processors
 - Best performance on embedded AI

Arm Cortex-M55 -0-Arm Ethos-U55

arr	n ⁺							[†] Thank You	+
+ +	+							Danke Merci	+
								・ · · · 谢谢 ありがとう	+
+ +								Ġracias	
Find out M Cortex-M5	55: deve							Kiitos 감사합니다	+
Ethos-U55	: devel	oper.a	rm.co	m/eth	os-U5	5		- धन्यवाद	+
								شکرًا תודה	+
© 2020 Arm Limited									+

		rn	\mathbf{n}^{\dagger}						⁺ The Arm trådemarks feåtured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.						
	+	+			+	+	+		+	featured +	may be trad	emarks of th +	ieir respectiv	ve owners.	
											www.arm.o	com/compar	ny/policies/t	rademarks	
												+	+		
+	4	+	14	+		4		4	+	+	·+	+	4		+
	+			+					+	+	+	+	+		
+	+	+		+					+	+	+	+	+		